skip to main content


Search for: All records

Creators/Authors contains: "Sunku, Sai S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moiré superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moiré metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.1 meV/atom scale, outperforming the gold-standard of quantum chemistry. Through studying the shapes of moiré domains with numerous nano-imaging techniques, and correlating with multi-scale modelling, we assess and refine first-principle models for the interlayer interaction. We document the prowess of moiré metrology for three representative twisted systems: bilayer graphene, double bilayer graphene and H-stacked MoSe 2 /WSe 2 . Moiré metrology establishes sought after experimental benchmarks for interlayer interaction, thus enabling accurate modelling of twisted multilayers. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Silicon waveguides have enabled large‐scale manipulation and processing of near‐infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies will further increase the functionality of silicon as a photonics platform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free‐space wavelength. This paper demonstrates that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can simultaneously enable dual‐band operation at both mid‐infrared (6.5–7.0 µm) and telecom (1.55 µm) frequencies, respectively. The device is realized via the lithography‐free transfer of hBN onto a silicon waveguide, maintaining near‐infrared operation. In addition, mid‐infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) supported in hBN is induced by the index contrast between the silicon waveguide and the surrounding air underneath the hBN, thereby eliminating the need for deleterious etching of the hyperbolic medium. The behavior of HPhP waveguiding in both straight and curved trajectories is validated within an analytical waveguide theoretical framework. This exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on‐chip photonic systems.

     
    more » « less